OTTICA GEOMETRICA

A.A. 2021 - 2022

12 Aprile 2022

Esercizio 1

Un raggio, di lunghezza d'onda d, propagandosi in un mezzo trasparente omogeneo ed
isotropo, incide su un diottro e viene rifratto in aria solo se l'angolo di incidenza risulta, in
valore assoluto, minore od uguale a 42.086°. Quale è il mezzo in cui si propaga il raggio
incidente?

ſ	ŗ	[nunti 2	1
ı		[punti 2	J

Esercizio 2

Consideriamo un prisma retto di NBK7 posto in aria. Un raggio, propagandosi in aria, incide su un cateto del prisma con un angolo di incidenza $i_1 = +4.73^{\circ}$. Determinare, per $\lambda = C$, l'angolo i_2 con cui il raggio incide sull'ipotenusa del prisma. La riflessione del raggio sull'ipotenusa è totale?

$$[i_2 = ____, ___]$$
 [punti 4]

Esercizio 3

Consideriamo uno specchio sferico in aria il cui raggio di curvatura è $R_1 = +500$ mm. Supponendo di essere in condizioni parassiali determinare le due lunghezze focali effettive e il potere dello specchio.

Esercizio 4

Consideriamo un diottro sferico aria – NBK7 in rifrazione il cui raggio di curvatura è $R_1 = 500$ mm. Una matita, di lunghezza L = 150 mm, è posta in aria perpendicolarmente all'asse ottico del diottro ad una distanza l = -2000 mm da quest'ultimo. Supponendo di essere in condizioni parassiali determinare per $\lambda = D$ la distanza l' dal diottro e la dimensione L' dell'immagine della matita formata dal diottro. Dire infine se l'immagine è reale (virtuale), e rovesciata (eretta).

$$[l' = ____, L' = ____, ____]$$
 [punti 5]

	•	•		_
Eser	O I	71	Λ	-
			₹,	~

Un diottro piano separa un mezzo trasparente omogeneo ed isotropo dall'aria. Se il piano
oggetto, posto in aria alla distanza di $l=-100\ mm$ dal diottro, è coniugato con il piano
posto a distanza $l' = -176.2 mm$, individuare il mezzo trasparente omogeneo ed isotropo
nel caso in cui la lunghezza d'onda di interesse sia $\lambda = e$.

[[punti 2]
<u></u>	

Esercizio 6

Attraverso una finestra protettiva di PMMA, dello spessore di $30 \, mm$, un tecnico sta osservando, alla lunghezza d'onda h, un oggetto posto in aria. Se al tecnico l'oggetto pare distare $-500 \, mm$ dal diottro della finestra che è affacciato verso l'oggetto, quale è la distanza effettiva di quest'ultimo nell'ambito della approssimazione parassiale?

[distanza effettiva =	[punti 2]
-----------------------	-----------

Esercizio 7

Consideriamo uno specchio concavo in aria di focale $f' = -\Delta$ ($\Delta > 0$). Determinare graficamente la posizione e la dimensione dell'immagine fatta dallo specchio di un oggetto lineare, di dimensione $L = \Delta/3$, posto alla distanza $l = \Delta$ dallo specchio.

[**punti** 8]

Esercizio 8

Consideriamo una lente sottile in aria di potere $\Phi = 2.5 \mathcal{D}$. Una bambola, di altezza L = 30 mm, è situata in aria perpendicolarmente all'asse ottico della lente ad una distanza l = -700 mm da quest'ultima. Supponendo di essere in condizioni parassiali determinare la distanza l' dalla lente e la dimensione L' dell'immagine della bambola formata dalla lente. Dire infine se l'immagine è reale (virtuale), e rovesciata (eretta).

$[l' = \underline{\hspace{1cm}},$	$L' = \underline{\hspace{1cm}},$,]	
				[punti 5]