OTTICA GEOMETRICA

A.A. 2018 - 2019

16 Aprile 2019

Esercizio 1

Un raggio, di lunghezza d'onda F, propagandosi in un mezzo trasparente omogeneo ed
isotropo, incide su un diottro e viene rifratto in aria solo se l'angolo di incidenza risulta, in
valore assoluto, minore od uguale a 41.879°. Quale è il mezzo in cui si propaga il raggio
incidente?

ſ	punt [i 2	2]	
L	 I P ·····		. 1	ı

Esercizio 2

Su un diottro aria – NBK7 incide un raggio, propagandosi in aria, con un angolo di incidenza $i = 10^{\circ}$. Se il raggio è rifratto nel NBK7 ad un angolo $i' = 6.551^{\circ}$ determinare la lunghezza d'onda associata al raggio incidente.

$$[\lambda = \underline{\hspace{1cm}}]$$
 [punti 2]

Esercizio 3

Consideriamo un prisma sottile di NBK7 posto in aria. Un raggio a cui è associata la lunghezza d'onda F' incide su di esso. Determinare l'angolo di cui il raggio emergente dal prisma è deviato rispetto al raggio incidente nel caso in cui l'angolo al vertice del prisma è uguale a 2.9°.

$$[\delta = \underline{\hspace{1cm}}]$$
 [punti 2]

Esercizio 4

Un fascio sottile di raggi paralleli, con $\lambda = g$, propagandosi in aria incide normalmente su un diottro aria – NSF4. Se il fascio incidente trasporta la potenza di 1 mW calcolare la potenza P'' del fascio riflesso in aria e P' del fascio trasmesso nell'NSF4.

$$[P'' = ___, P' = __]$$
 punti 3]

Esercizio 5

Consideriamo una lente sottile positiva in aria di NSF4, la cui focale per $\lambda = h$ è $f_h' = 500$ mm. Un oggetto all'infinito sottende l'angolo $u_0 = -0.09^\circ$. Determinare la posizione l' e la dimensione L' dell'immagine rispettivamente per $\lambda = h$ e $\lambda = r$.

$$[l'_h = \underline{\qquad}, \ l'_h = \underline{\qquad}, \ l'_r = \underline{\qquad}]$$
 [punti 4]

Esercizio 6

Consideriamo un diottro sferico aria – NBK7, il cui raggio di curvatura è + 250 mm, ed una sorgente puntiforme posta in aria sull'asse ottico. Utilizzando le formule per il tracciamento di un raggio meridiano parassiale determinare, per $\lambda = h$, la posizione dell'immagine della sorgente puntiforme fatta dal diottro nel caso in cui la distanza sorgente – diottro sia in valore assoluto uguale a 1250 mm.

$$[t_1 = \underline{\hspace{1cm}}]$$
 punti 4]

Esercizio 7

Consideriamo uno specchio sferico convesso in aria di focale $f'=\Delta$ ($\Delta>0$). Determinare graficamente la posizione e la dimensione dell'immagine fatta dalla lente di un oggetto lineare, di dimensione $L=\Delta$, posto alla distanza $l=3\Delta$ dallo specchio stesso.

[punti 8]

Esercizio 8

Consideriamo due lenti sottili in aria di potere $\Phi_1 = 5 \mathcal{D}$ e $\Phi_2 = 3 \mathcal{D}$ rispettivamente. Supponendo di essere in condizioni parassiali determinare la distanza t a cui mettere le due lenti sopra descritte in modo che il sistema ottico centrato così costituito abbia potere $\Phi = 7 \mathcal{D}$. Inoltre per tale sistema ottico determinare: la **focale**, la focale **anteriore** e **posteriore**, la posizione dei **piani principali**. Infine se un pettine è posto, ortogonalmente all'asse ottico, alla distanza $\Delta_1 = -900$ mm dalla prima lente determinare la distanza Δ_2 dalla seconda lente, dell'immagine del pettine fatta dalla due lenti.

$$[t = ____, f' = ____, ffl = ____, bfl = ____]$$
 $[d = ___, d' = ___, \Delta_2 = ___]$

[punti 5]