OTTICA GEOMETRICA E VISUALE – I

A.A. 2010 - 2011

27 Settembre 2011

Esercizio 1

Consideriamo una lente sottile positiva in aria di focale f' = +700 mm. Una sorgente puntiforme è posta sull'asse della lente ad una distanza l = -1300 mm da quest'ultima. Se il diametro della lente è D = 6 mm determinare l'apertura numerica NA del cono di raggi entranti nella lente e l'apertura numerica NA' del cono di raggi emergenti dalla lente.

$$[NA = ___]$$
 [punti 2]

Esercizio 2

Consideriamo una lente sottile positiva in aria di NBK7, la cui focale per $\lambda = h$ è $f_h' = 1000$ mm. Un oggetto all'infinito sottende l'angolo $u_0 = -0.3^\circ$. Determinare la posizione l' e la dimensione L' dell'immagine rispettivamente per $\lambda = h$ e $\lambda = r$.

$$[l'_h = \underline{\qquad} \quad L'_h = \underline{\qquad} \quad l'_r = \underline{\qquad} \quad L'_r = \underline{\qquad} \quad [\text{ punti 4}]$$

Esercizio 3

Consideriamo un prisma retto di NSF4 posto in aria. Un raggio, propagandosi in aria, incide su un cateto del prisma con un angolo di incidenza $i_1 = +4.5^{\circ}$. Determinare, per $\lambda = D$, l'angolo i_2 con cui il raggio incide sull'ipotenusa del prisma. La riflessione del raggio sull'ipotenusa è totale?

$$[i_2 = \underline{\hspace{1cm}}]$$
 [punti 4]

Esercizio 4

Consideriamo una lente sottile in aria di potere $\Phi = 3 \mathcal{D}$. Un sigaro, di altezza $L = 200 \,\mathrm{mm}$, è situato in aria perpendicolarmente all'asse ottico della lente. Supponendo di essere in condizioni parassiali determinare la distanza l dalla lente a cui deve essere posto il sigaro affinchè la lente formi di quest'ultimo una immagine reale e rovesciata posta a distanza $l' = 700 \,\mathrm{mm}$ dalla lente. Calcolare infine l'altezza L' dell'immagine del sigaro.

$$[l = ___]$$
 [punti 4]

Esercizio 5

Un raggio, di lunghezza d'onda *h*, propagandosi in un mezzo trasparente omogeneo ed isotropo, incide su un diottro e viene rifratto in aria solo se l'angolo di incidenza risulta, in valore assoluto, minore od uguale a 41.573°. Quale è il mezzo in cui si propaga il raggio incidente?

[punti 2]

Esercizio 6

Consideriamo un diottro piano acqua – NBK7 in rifrazione. Un corallo, di altezza L=500 mm, è situato in acqua perpendicolarmente all'asse ottico del diottro ad una distanza l=-4 m da quest'ultimo. Supponendo di essere in condizioni parassiali determinare per $\lambda=d$ la distanza l' dal diottro e la dimensione L' dell'immagine del corallo formata dal diottro. Dire infine se l'immagine è reale (virtuale), e rovesciata (eretta).

$$[l' = _____L' = ____]$$
 [punti 4]

Esercizio 7

Un fascio sottile di raggi paralleli, con $\lambda = D$, propagandosi nel NBK7 incide normalmente su un diottro NBK7– NSF4. Se il fascio incidente trasporta la potenza di 0.7 mW calcolare la potenza del fascio riflesso nel NBK7 e del fascio trasmesso nel NSF4.

$$[P'' = ___]$$
 [punti 4]

Esercizio 8

Consideriamo una lente sottile positiva in aria di focale $f' = \Delta$ ($\Delta > 0$). Determinare graficamente la posizione e la dimensione dell'immagine fatta dalla lente di un oggetto lineare, di dimensione $L = \Delta/3$, posto alla distanza $l = +3\Delta$ dalla lente stessa. [punti 6]